任何一个机械产品都必须保证预期的功能、寿命和安全可靠,并且技术,价格低廉。为 此,机械产品必须遵循一套完整的生产规程和科学质量管理。振动时效是近年来兴起的新技 术,国际上称之“VSR”技术。
振动时效(VSR)就是在激振设备周期性——激振力的作用下,使构件内残余应力叠加,产生 局部屈 服,引起微小的塑性变形,使构件内残余应力降低和重新分布,增强抗外载能力,从而提高 构件的尺寸精度稳定性。
淮南煤矿机械厂在收集国内外大量资料及借鉴一些厂家成功经验的基础上,针对本厂中小型 零件较多的情况,开展了“振动台法处理中小型工件”课题研究,逐步完善工艺,积累了一定的经验。 先后对防爆电机 壳、出线箱、掘进机电控箱壳体、油箱体、真空过滤机壳体,液压破碎机壳体等2800余件零、部件进行振动时效处理。其中绝大部分构件都是因半精加工后,发现构件存在夹砂、气孔、 开焊、漏水等缺陷,为不使零件报废而进行了较大面积补焊,而焊后的构件又因其加工余量小不能进行传统的热时效处理,而用振动时效来消除焊后内应力。
1 关于振动台法处理中小型工件的可行性探讨
为了阐述“振动台法”处理中小型构件的金属学原理,尚须借助大型构件振动时效机理进行 分析。
对工件施加激振力,使工件作简谐振动,此时激振力在工件内部产生交变动应力σd ,σd与工件残余应力σr叠加。因为σr在工件内部的分布是不匀的,在某些应力集中区域的σr值往往是非 应力集中区域的若干倍,这就可能出现两种情况:
(1)在应力集中区域σd+σr≥σs(σs为构件的屈服限),位错开始运动,产生 局部滑移,甚至出现整体滑移。工件发生塑性变形,变形后变形区域的σr得以释放。 由于塑性变形使这个区域出现加工硬化现象,结构上趋于稳定,大地减少缺陷。要想在这个区域继续变形变得相对困难,变形就会向其它区域转移。
(2)当变形区域转移到σr值较小的区域时,即σd+σr<σs时,由于金属内部大 量位错存在,而位错 本身总是从高能位置向低能位置转移,在附加交变应力σd的持续作用下,欲动位错不断 获得能 量,使位错开始运动。实际上在位错运动过程中常受到晶界、杂质的阻碍,形成位错塞积群 。由于σd的持续作用,塞积群中位错数量不断增加。由于障碍物的阻碍,在塞积群的前 沿形成 新的应力集中,致使该区域的残余应力σr不断增大,当增大到σd+σr≥σs时, 位错滑移便在这个区域内发生,这个区域便发生塑性变形,同样,该区域的σr得以释 放。
在交变应力的反复作用下,工件发生循环硬化,松驰刚度得以提高,即工件的抗变形能力得以提高;同时,由于交变应力的作用,工件受到104~106次反复考曲,将出现适应现象 ;由于非弹性体逐步向弹性体过渡,使得工件在服役期间出现塑性变形的可能性大为降低。
对于上述振动时效机理和处理大型工件所具有的效果,已被国内许多制造厂家生产实践证明 ,是大家已能接受的事实。而采用“振动台法”对中小型工件振动时效处理是否同样满足上述机理及效果呢?
图1 淮南煤矿机械厂振动台(略)
图1为淮南煤矿机械厂处理中小型工件的振动台示意图。其工件6底面与平台7吻合均 匀;当螺母3紧固后工件不会弯曲,只是压板4对工件有局部压应力,由于此 压应力只属局部存在,不影响我们分析,故可忽略。
在振动时效开始时,工件的塑性变形尚未形成,此时工件内的应力为σd+σr,这种 情况与大件振动时效处理是相同的。随着时间的增加,在σd的持续作用下,金属晶体 有位错运动,产生滑移的趋势,即工件有发生塑性变形的趋势。如果是大型工件处理,无论是采用自由支撑、悬臂支撑还是铰支撑,工件都可毫无阻碍发生塑性变形。而“振动台法” 却是将中小型工件刚性地联接在平台上,工件的变形必须带动平台一起变形才能实现,平台 相对工件又具有足够的刚度,这就有一个十分关键的问题:装夹在平台上的工件在振动时效 处理时是不是发生塑性变形?这正是平台振动与大型工件振动的区别所在。
激振力对工件持续做功,使得晶体中有位错、滑移运动趋势的小单元(在应力集中处) 不断获得能量,在激振力和激振时间足够的情况下,这些不稳定的小单元将克服阻力去实现 位错、滑移运动。也就是说,尽管工件被刚性联接在振动平台上,而平台的刚性又足够大, 工件的塑性变形看来似乎不能发生,而事实上,只要σd+σr≥σs,工件就开始 屈服,位错、滑移运动必然发生,这正是金属晶体结构的力学性质所决定的。伴随着这些运 动的是工件弹性变形能的储量不断增加,或者压板、螺栓及平台装夹件弹性变形能的储量不 断增加,或者是两者兼有之。
与大件振动时效处理不同的是:工件的应力由σd+σr过渡到σd+σ′r+σt (σt为刚性装夹使得塑性变形后的工件 产生的装夹应力;σ′r为剩余残余应力)。由于工件金属晶体发生位错、滑移运动,而 这些运动又借助于σ′r才发生的,所以使得σr得以释放,即|σ′r|<|σ r|,尤其是在应力集中区域,|σ′r|≤|σr|。当振动完毕,激振器停止工 作,附加动应力σd=0;当拆除对工件的装夹后,工件与装夹件立即发生弹性变形,随之 又有σt=0,那么工件的应力只剩下σ′r。由于|σ′r|<|σr|,因 而可以认为:应用“振动台法”处理中小型工件,同样具有降低和均化残余应力的作用,能 够达到时效处理的目的。
此外,“振动台法”处理工件同样受到交变应力的反复作用,也将发生循环硬化和适应现象 ,使工件的抗变形能力和弹性性能得以提高。
综上所述,我们认为:“振动台法”对中小型工件的振动时效处理,原则上满足大型工件振 动时效机理,从金属学原理上能够圆满解释,因此在理论上是可行的。
词条
词条说明
三维扫描仪产品特点: 1、扫描速度快、精度高:单幅扫描时间少于3秒;全自动拼接,拼接精度可达0.03mm/m(3um)。 2、机器硬件:机器硬件精良,原装进口,可靠性、耐用性好;保证产品有好的稳定性。 3、扫描范围广泛:小到直径10mm的物体,大到两米高的物体,都可精密扫描。 4、非接触无损伤:光栅式照相扫描技术,对物件无损伤、无接触变形,适用各类物体的扫描。 5、操作简单易使用:操作界面简洁明
任何一个机械产品都必须保证预期的功能、寿命和安全可靠,并且技术,价格低廉。为 此,机械产品必须遵循一套完整的生产规程和科学质量管理。振动时效是近年来兴起的新技 术,国际上称之“VSR”技术。 振动时效(VSR)就是在激振设备周期性——激振力的作用下,使构件内残余应力叠加,产生 局部屈 服,引起微小的塑性变形,使构件内残余应力降低和重新分布,增强抗外载能力,从而提高 构件的尺寸精度稳定性。 淮南
铝合金的强化都是通过热处理(固溶处理+时效处理)的途径得以实现。但这些铝合金结构件毛坯在成形(冷变形、焊接等)与热处理过程.中常常产生很大的残余应力,造成在后续的机械加工过程中,随着材料的不断去除,原来毛坯中残余应力的“平衡状态”被打破,残余应力将重新分布直至达到内力平衡,此时往往产生很大的加工变形,使零件失去应有的加工精度。另外,残余拉应力还增加铝合金结构件应力腐蚀开裂的敏感性,导致早期疲劳失效
山东厂家直销双目/四目工业级逆向三维扫描仪(非接触式拍照扫描仪) 三维扫描仪产品介绍: 三维立体扫描仪主要应用于物体轮廓的三维数据的获取,是实现三维数据数字化的一种为有效快捷的工具,具有精度高速度快、对物件无损伤、无接触变形、易操作等优点,广泛用于模具设计制造、零配件逆向设计、立体雕塑雕刻、工业产品制造,质量检测与控制、测量等各种领域。三维立体扫描系统采用光栅式照相技术,可在短时间内获取物体表面
公司名: 济南力拓信息技术有限公司
联系人: 景晔
电 话:
手 机: 15562518896
微 信: 15562518896
地 址: 山东济南蓝翔路时代总部基地二区7号5楼
邮 编: