放弃该放弃的是无奈,放弃不该放弃的是无能,不放弃该放弃的是无知,不放弃不该放弃的是执着。
三、系统主要功能及策略 加热炉控制主要包括炉膛温度控制、燃烧介质压力控制、燃烧介质流量控制及部分设备保护控制。调整燃烧控制软件中的温度模糊控制程序和流量模糊控制程序参数:采样/控制周期,偏差模糊化因子,偏差变化率模糊化因子,输出量化因子,同时对模糊控制参数表进行了初步优化。 3.1炉温控制 炉温控制是加热炉的核心控制部分,其目的是通过控制燃料——煤气和助燃剂——热空气的流量,使炉温的动态性能指标和静态性能指标满足工艺要求。 6段炉温检测、控制(含残氧分析),6段煤气、空气流量比例调节,6段煤气流量/累计及空气流量记录。 加热炉每段设二支热电偶测量炉温,经断偶检测器检定后送DCS系统的温度控制器,温度控制器的设定值由操作员设定。在炉子烟道内设有氧分析仪,对烟气的含氧量进行在线分析,信号送DCS系统中,自动参与空燃比修正。温度控制器送出的信号经过双交叉限幅控制、氧量反馈校正等环节后分别送给空气和燃气流量控制器,构成温度流量串级回路,调节空气和燃气的流量,以达到控制炉温的目的。为此我们采用条件判断语句模式,根据温度误差大小及其变化趋势对交叉限幅模式进行优化,从而使流量控制器的设定值准确。大大改善了温度控制效果。 为了克服双交叉限幅控制升降温时间较慢的缺点,控制中采用二自主度型前馈调节器技术以达到快速升(降)温的目的。采用这些先进的控制策略的目的是达到充分的燃烧和提高加热质量,以及作为轧机延迟时温度控制,并确保燃烧自动控制的稳定性。由于系统软件上存在的干扰问题,曾造成多次计算机死机、画面参数刷新缓慢等问题。经过优化,完全解决了存在的隐患,同时对空燃比自动寻优器进行了进一步的优化,调整了控制表中的一些具体控制参数,提高了控制精度,节约了燃料,满足了生产的要求,炉温控制精度在±5℃,升降50℃仅需12分钟。煤气压力扰动时温度曲线见图2。
词条
词条说明
上位机运用mcgs组态软件主要实现以下的功能模块:欢迎画面、主画面、系统运行记录、设备配置图、控制柜实况图、电压电流显示图、控制柜控制屏、事件记录、报警记录、模拟屏显示、曲线、重载数据库、程控操作、报警画面、数据备份与恢复、模拟控制柜接线图、系统帮助画面。 采用mcgs自带的数据库的报表管理系统对整个控制系统产生的数据进行查询、打印、转出、计算、分析。该系统主要有以下功能:日报管理、月
、实时信息系统SIS 和集散控制系统DCS互联起来,以实现数据交换和信息共享,作者认为可以实施以下一系列的实时系统。 3.1 校验数学模型 由于DCS控制系统仿真采用了较为先进的虚拟DCS技术, 使得仿真控制系统的控制参数和算法完全来源于从DCS工程师站下载的组态文件,并使用与真实DCS系统相同的控制算法、模块、时间片、位号等。可以认为,基于虚拟技术的仿真控制系统的功能逼真
对一个年轻人而言较重要的是个人价值的增加。 循环除盐水电控系统是根据聚合物切粒对除盐水的工艺要求,通过对国内外各种小型plc的对比、分析,采用了以西门子s7-200plc为控制核心,用pid控制器、调节阀实现恒温恒压控制,整个系统组成简单,程序编制容易,控制功能完善,具有联控、联锁保护、通讯等功能,适应性很大,并且采用人机界面操作和显示,操作简单方便,具有故障自诊断功能,维修排故直观
2监测系统的结构 基于现场总线的监控系统有两种功能,包括监测区域的监控和信息管理单元、控制室里的控制单元。位于清盘真空机附近的所有智能监测单位都有微处理器,具有以下功能:各自的信号采样,A/D转换,数据计算等。现场总线是单位从站中离散检测单元和主站之间较重要的连接。模拟信号被数字信号取代以构成双向沟通,以利于操作者在控制室里进行控制、检查和参数设置。这种结构,一方面提高了监测系统的精度
公司名: 厦门仲鑫达科技有限公司
联系人: 徐亚婷
电 话: 0592-5087595
手 机: 18020776785
微 信: 18020776785
地 址: 福建厦门厦门国贸大厦
邮 编: