颗粒分散性定量分析之低场核磁技术
颗粒分散性是指粉体颗粒在液相介质中分离散开并在整个液相中均匀颁的过程,根据分散方法的不同,可分为以下几种:
机械搅拌分散:主要借助外佛罗里达剪切力或撞击力等机械能,使纳米粒子在介质中充分分散,通过对分散体系施加机械力,引起体系内物质的物理、化学性质变化以及伴随的一系列化学反应来达到分散目的,但是研磨过程中因为研磨介质的存在而带来了新杂质,同时对于**微粒的形成也有一定的限制。
利用**溶剂脱水:用表面张力小的**溶剂置换颗粒表面吸附的水分,以减少造成颗粒聚结的毛细管力。现常用的溶剂为醇类,目的是利用醇类洗去脱粒表面的配位水分子,并以烷氧基团取代颗粒表面的羟基团。
颗粒分散性定量分析如何评价?
粒径表征描述颗粒分散性:颗粒在液体中分散形成悬浮体系,颗粒粒度越小,且随时间变化越稳定,可视为其分散性越好,不易团聚。粒度表征通常用于表征表面改性前后的颗粒分散性。颗粒的分散性越好,颗粒粒度分布越接近单分散颗粒;相反地,颗粒分散性越差,颗粒尺寸分布趋于从单分散颗粒移动到较粗颗粒。
电镜表征描述颗粒分散性:扫描电镜法是较直观的一种表征颗粒在液体体系中的存在状态的方法。将颗粒在液相中分散后,取适量悬浮液滴入扫描电镜载物台,烘干后在电子显微镜下观察,拍照,可比较出分散性的好坏。
低场核磁技术可以用于颗粒分散性的描述,是一种快速无损的检测技术。适用于科研与工业领域。低场核磁技术的好处之一是测量是非侵入性的-测量可以在同一样品上重复进行,这将使稳定性研究所需的试验材料的数量较小化,并减少与取样相关的样品结果的变化,特别是在早期开发制造过程中。热研究可以直接在核磁共振试管中进行,包括高温研究和冻融循环研究。科学家使用流变学来监测浓缩分散体的物理稳定性,然而,这种测量通常需要大量样品,而且具有破坏性,而核磁共振测量可以在整个稳定性研究过程中对同一样品进行。
PQ001核磁共振分析仪
颗粒分散性定量分析之低场核磁技术基本原理:
颗粒分散体中溶剂的弛豫速率与可用颗粒表面积成线性比例。与游离聚合物相关的溶剂或聚合物环和尾部内的溶剂在弛豫速率方面没有显著变化,因为它们仍然具有很高的流动性。当聚合物在颗粒表面形成吸附层时,由于水分子在近表面区域的比例和/或停留时间增加,总的弛豫速率增强。通过低场核磁技术的弛豫差异,即可低场核磁定量评价颗粒分散性。
词条
词条说明
可动流体饱和度是什么?可动流体饱和度(Mobile Fluid Saturation)是指岩石或储层中可以在实际生产过程中流动的流体(通常是油或水)所占据的孔隙空间的比例。它表示在实际采油或采水过程中可以被有效地排出或生产出来的流体部分。 可动流体饱和度是储层评价和油藏开发中的一个重要参数。它对储层的产能、采收率和油气储量的评估具有重要意义。可动流体饱和度反映了储层中可被采集和产出的流体
聚丙烯等规度测试标准方法(核磁法)聚丙烯(PP)是无色半透明、无毒的热塑性树脂,与其它通用热塑性塑料相比,具有相对密度小、价格低以及综合性能较好等特点,被广泛地应用于化工、建筑、家电、农业、交通运输等多个领域。按照取代甲基的立体位置排列方向和次序的不同,聚丙烯可分为等规、间规和无规聚丙烯三种,一般工业生产的均聚聚丙烯以等规物为主要成分。本文主要介绍聚丙烯等规度测试标准方法(核磁法)。等规和间规聚丙
低场核磁横相弛豫时间在核磁共振现象中,弛豫是指原子核发生共振且处在高能状态时,当射频脉冲停止后,将迅速恢复到原来低能状态的现象。恢复的过程即称为弛豫过程,它是一个能量转换过程,需要一定的时间反映了质子系统中质子之间和质子周围环境之间的相互作用。完成弛豫过程分两步进行,即纵向磁化强度矢量Mz恢复到较初平衡状态的M0和横向磁化强度Mxy要衰减到零,这两步是同时开始但独立完成的,下面将简单介绍低场核磁横
t1核磁(T1 NMR)是指核磁共振(Nuclear Magnetic Resonance,NMR)中的一种参数,用于描述核自旋在外加磁场中的弛豫过程。在核磁共振实验中,样品置于强磁场中,经过一系列的射频脉冲和探测过程,可以得到核自旋的弛豫时间。其中T1(纵向弛豫时间)是指核自旋在外加磁场中,从激发状态返回到平衡态所需的时间。t1核磁在化学、材料科学、生物医学等领域有广泛应用。通过测量T
公司名: 苏州纽迈分析仪器股份有限公司
联系人: 何经理
电 话: 15618037925
手 机: 18939912673
微 信: 18939912673
地 址: 江苏苏州江苏省苏州高新区科灵路78号苏高新软件园2号楼
邮 编:
公司名: 苏州纽迈分析仪器股份有限公司
联系人: 何经理
手 机: 18939912673
电 话: 15618037925
地 址: 江苏苏州江苏省苏州高新区科灵路78号苏高新软件园2号楼
邮 编: