低场核磁法研究离子交换树脂溶胀性
溶胀是指溶剂分子扩散进入高分子内部,使其体积膨胀的现象。溶胀行为是高分子材料的一项重要参数,高分子材料的平衡溶胀率会影响到材料中物质的扩散系数,表面润湿性和机械强度等。很多研宄将溶胀特性作为一个设计参数来制备具有特殊应用的智能材料。
溶胀是高分子材料特有的现象,其原因在于溶剂分子与高分子尺寸相差悬殊,分子运动速度相差很大,溶剂分子扩散速度较快,而高分子向溶剂中的扩散缓慢。因此,高分子溶解时首先是溶剂分子渗透进入高分子材料内部,使其体积增大,即溶胀。随着溶剂分子的不断渗入,溶胀的高分子材料体积不断增大,大分子链段运动增强,再通过链段的协调运动而达到整个大分子链的运动,大分子逐渐进入溶液中,形成热力学稳定的均相体系,即溶解阶段,如下图所示。
溶胀有两种:
无限溶胀:线形聚合物溶于良好的溶剂中,能无限制吸收溶剂,直到溶解成均相溶液为止。所以溶解也可看成是聚合物无限溶胀的结果。例:天然橡胶在汽油中;PS在苯中。
有限溶胀:对于交联聚合物以及在不良溶剂中的线形聚合物来讲,溶胀只能进行到一定程度为止,以后无论与溶剂接触多久,吸入溶剂的量不再增加,而达到平衡,体系始终保持两相状态。
低场核磁法研究离子交换树脂溶胀性:
低场核磁共振设备主要是检测样品中的H质子。将样品放入磁场中之后,通过发射一定频率的射频脉冲,使H质子发生共振,H质子吸收射频脉冲能量。当射频脉冲结束之后,H质子会将所吸收的射频能量释放出来,通过的线圈就可以检测到H质子释放能量的过程,这也就是核磁共振信号。对于性质不同的样品,其能量释放的快慢是不同的,通过这些信号差别就可以寻找规律,研究样品内部性质。
低场核磁共振(LF-NMR)在研究基于水迁移率的聚合物网络的水传输和微观结构方面具有巨大潜力。与高分辨率核磁共振不同,低场核磁共振(LF-NMR)主要用于通过测量弛豫时间来阐明反映结构异质性和相互作用的分子迁移率。研究表明,低场核磁共振(LF-NMR)是一种快速、无创、无损的测定水组分分布的方法。
纽迈PQ001系列低场核磁共振分析仪
词条
词条说明
2000亿贴息用于设备更新改造,引爆仪器采购热潮!纽迈分析多款仪器任意挑!
9月初,常务会议确定以政策贴息、专项再等一系列“组合拳”,来支持高校、职业院校、医院、中小微企业等领域的设备购置和更新改造,总体规模为1.7万亿。 9月28日,又一政策落地,人民银行设立2000亿元设备更新改造专项再资金,支持金融机构向卫生健康、教育、节能等10个领域的设备更新改造投放中长期,*财政贴息 后企业实际利率不**0.7%,且落地时间紧迫,申请截至今年年底。 &
1. 什么是低场核磁共振;核磁共振仪器按磁场强度可分为以下几类:>3.0T ———-高场强核磁;1.0T-3.0T —–中场强核磁;0.1T-1.0T —–低场强核磁;<0.1T ———**低场强核磁;低场核磁共振主要是指磁场强度比较低的核磁共振仪器。低场核磁共振技术应用领域非常广泛,而且还处在不断拓展之中,低场核磁共振技术主要基于四个方面进行样品分析与检测:(1)基于信号幅
一、核磁共振测t1弛豫时间是什么?核磁共振测量T1弛豫时间(T1 relaxation time)是一种实验方法,用于确定核自旋系统从激发态返回平衡态所需的时间。它是核磁共振(NMR)技术中的一个重要参数,常用于研究物质的结构、动力学和性质。T1弛豫时间是由于核自旋系统与其周围环境相互作用引起的。在核磁共振实验中,我们通过一系列的脉冲序列来操控核自旋的态,并观察其回到平衡态的过程。 &n
纽迈受邀参加ECF2022*十二届亚太页岩油气暨非常规能源峰会
科创中国•ECF国际页岩气论坛2022*十二届亚太页岩油气暨非常规能源峰会于2021年10月19日在上海市科协科学会堂开幕。本届峰会以“塑造能原未来,在低碳经济中蓬勃发展”为主题,旨在在**国家能源安全下,探索页岩油气等非常规能源如何通过技术创新、管理创新、机制创新,更高效率、更低成本的高质量发展,以适应未来的低碳世界。 此次峰会线上线下共有近250家企业,1000+人参会,有美国、
公司名: 苏州纽迈分析仪器股份有限公司
联系人: 何经理
电 话: 15618037925
手 机: 18939912673
微 信: 18939912673
地 址: 江苏苏州江苏省苏州高新区科灵路78号苏高新软件园2号楼
邮 编:
公司名: 苏州纽迈分析仪器股份有限公司
联系人: 何经理
手 机: 18939912673
电 话: 15618037925
地 址: 江苏苏州江苏省苏州高新区科灵路78号苏高新软件园2号楼
邮 编: