低场核磁法用于晶型药物研究
晶型药物的研究现状
多晶型现象广泛存在于固体化合物中,药物多晶型会影响固体药物的产品质量和**效果,因此对于这方面的研究逐渐得到国内外众多研究者的重视。现如今,固体药物的多晶型研究己经成为新药开发和新药报批过程中的重要组成部分。药物的晶型研究在新药研发中发挥着重要的角色,被创新药研发公司用来作为药物提高成药性、降低开发风险、保证产品质量和建立有效砖利壁垒等的重要手段,甚至对药物开发成败起决定性作用。
固体药物的多晶型现象
固体药物一般都具有多种形态,如多晶型、溶剂化物、共晶等。广义上多晶型就是一种物质能以两种或两种以上不同的晶体结构存在的现象。固体药物的形态可以分为晶态和非晶态,主要根据是其内部质点(如原子、离子或分子)在结构中排列方式的有序或无序。晶型不同可能会影响药物在体内的溶出速率和吸收速度,从而影响该药物生物利用度、临床疗效和安全性。
多晶型固体药物对生物利用度有哪些影响?
药物多晶型按稳定性主要分为3种,即稳定型、亚稳型和不稳定型。稳定型具有熵值小,熔点高,化学稳定性好等优点,但是这种稳定性晶型的溶解度和溶出速率较低,生物利用度差。不稳定型正好相反,而介于两者之间的亚稳型会随着贮存时间会向稳定型转变。固体药物由于样品晶型的不同,其理化性质,如熔点、密度、硬度、晶体外形、制剂的稳定性等,均会发生显著变化。固体药物因为多晶型自由能之间差异与分子间作用力的不同,导致样品溶解度、药物溶出度和生物利用度的不同,进而影响药物吸收速率,使药物的疗效发生变化。
低场核磁法用于晶型药物研究的原理:
结晶和非结晶API的T1弛豫行为存在显著差异,测量T1弛豫时间是区分结晶态和非晶态的有效参数。结晶形式的T1值大于非结晶形式的T1值。大家都知道,弛豫时间和旋转相关时间之间的关系反映了化合物的分子运动性。一般来说,在固态下,分子运动性越低,T1弛豫时间越长。使用时域核磁共振观察到的T1弛豫行为对于评估API粉末的结晶状态非常有效。
低场核磁法用于晶型药物研究的定性研究:
在特定的温度下,晶型稳定的药物,对应的T1弛豫时间基本保持不变。当发生晶型转变时,时域核磁测得的T1弛豫时间发生对应的变化。根据测定的T1弛豫行为,可以监测物理混合物中结晶专题与晶型转变过程。
纽迈PQ001系列低场核磁共振分析仪
词条
词条说明
低场核磁技术研究胶体溶胀过程亲水胶体的溶胀过程是高聚物吸收液体而体积增大过程的现象。胶体化合物的分子结构中含有许多亲水基团,能与水分子发生作用。质点水化后似分子状态分散于水中,形成亲水胶体溶液。如动物胶汁、酶的水溶液及其他含蛋白质的生化制剂、**的多糖类、粘液质及树胶等等遇水后所形成的胶体溶液均属此类。亲水胶体绝大多数为高分子化合物,所以亲水胶体溶液也称高分子水溶液。随着非极性基因数目的增多,胶体
核磁共振弛豫时间与什么有关什么是弛豫时间?弛豫时间,即达到热动平衡所需的时间。是动力学系统的一种特征时间。系统的某种变量由暂态趋于某种定态所需要的时间。在统计力学和热力学中,弛豫时间表示系统由不稳定定态趋于某稳定定态所需要的时间。什么是核磁共振弛豫时间?要了解核磁共振弛豫时间,首先了解一些核磁共振基本原理:核磁共振从字面意思可以理解为原子核在磁场中发生共振。一般核磁共振中的原子核是指氢原子核。磁是
岛礁工程地质研究对于理解海洋环境和**岛礁稳定性至关重要。原位应力应变特性是评估岛礁地质稳定性的关键因素之一。随着科技的发展,低场核磁共振技术(LF-NMR)为岛礁地质研究提供了一种新的无损检测手段。岛礁地质特性:岛礁通常由珊瑚礁构成,其*-特的地质结构对工程稳定性提出了特殊要求。了解岛礁地区的原位应力应变特性对于工程设计和灾害预防具有重要意义。原位应力应变的重要性:原位应力应变特性决定了岛礁地质
一、什么是可燃冰?可燃冰学名是天然气水化合物,是甲烷、天然气、水的合成体。是在高压低温条件下可燃气体分子和水分子紧密结合的合成物,是白色或浅灰色的,形状像冰一样的冰雪晶体。它可以像固体酒精一样被点燃,所以被称为“可燃冰"。它是能量密度大而且是无污染能源。可燃冰分布于深海或陆域永-久冻土中,其燃烧后仅生成少量的二氧化碳和水,污染远小于煤、石油等,且储量巨大,因此被国-际-公-认为石油等的接替能源。二
公司名: 苏州纽迈分析仪器股份有限公司
联系人: 何经理
电 话: 15618037925
手 机: 18939912673
微 信: 18939912673
地 址: 江苏苏州江苏省苏州高新区科灵路78号苏高新软件园2号楼
邮 编:
公司名: 苏州纽迈分析仪器股份有限公司
联系人: 何经理
手 机: 18939912673
电 话: 15618037925
地 址: 江苏苏州江苏省苏州高新区科灵路78号苏高新软件园2号楼
邮 编: