关键词:数据中心;综合能源管控平台;架构与功能
0引言
数据中心集群。
在中心建设,强化节能降耗要求。
如何降低数据中心绿色电力供应。
数据中心能源站、村能源站、光伏系统等子系统交互,实现能源的综合调度与运行管理;参考文献研究智慧能源管控平台的架构和主要功能,主要功能包括多能实时监测、多能优化调度、能源销售一体化管理、智能运维、智慧能源增值服务;参考文献研究空港智慧能源平台架构和主要技术;参考文献针对负荷聚合商研究需求响应平台架构和功能,功能包括资源管理、负荷监测、响应邀约、响应申请、响应策略与控制、响应监控、响应补偿、响应效果分析。
相较于产业园区能源管控平台,数据中心能源管控平台不能套用常规的园区能源管控平台,需要根据用能架构和能源供给方式,深入研究其架构与功能需求。
1用能结构分析
1.1用能需求
数据中心用能设备主要包括配电柜、不间断电源、交换机、服务器、供冷系统、环境监控等用电设施。其中,服务器和供冷系统占园区全部能耗的80%以上。
据统计,2020年中国数据中心用电量约占全社会总用电量的2.7%,预计2023年用电规模将继续增长66%。
1.2能源结构
能源生产侧:为满足的能源需求,大型数据中心可建设风电场、光伏电场作为绿色主供电源,园区布置分布式光伏进一步提升能源供给量。
能源传输侧:风光电场可以通过接入公用电网后,以中长期绿电交易方式给园区供电,还可通过专线、专变方式给园区供电。为了平滑新能源电场出力,新能源电场侧部署储能;为了增加园区负荷的调节能力,园区侧部署储能。园区集中供冷提升供冷效率,IT设备余热可回收利用。
能源消费侧:建设充电桩,挖掘算力、充电桩等负荷的调节能力,发挥综合能源的互济能力。
2能源供给方式分析
为了实现数据中心绿色低价供电,风光电场的绿电供给有两种方式:一是通过先上公网,然后通过中长期绿电交易供电方式;二是绿色专线供电方式。当风光电场较分散,近期无法实现专线供电的,可采用中长期绿电交易方式;风光电场易于专线接入且公用电网同意作为园区备用的,可以专线接入园区供电。
2.1中长期绿电交易方式
中长期绿电交易方式是通过代理园区内的用电企业,作为整体代理参与绿色电力市场交易,通过源网荷储协调控制和交易策略优化,*大成本降低园区整体用能成本,基本功能需求如下:
(1)绿电中长期交易。
为提升服务器效率,数据中心或服务器之间优化调度,从能源角度看,负荷随同数据任务映射变化。因此,数据中心需要根据数据任务的优化调度,结合园区储能、分布式光伏,实现园区用电和新能源发电的动态匹配,支撑实现电力市场中的绿色电力中长期交易,为大数据产业园区提供长期稳定低价的绿色电力。
(2)聚合园区负荷降低园区整体成本。
聚合数据中心负荷,结合峰谷时段电价以及现货市场购电价格,优化调节数据任务时段分布,合理调度储能实施,*大化降低园区公网购电费用。同时,在辅助服务市场中,利用储能设施和数据任务的调节能力,争取获得额外收益。
2.2绿色专线供电方式
绿色专线供电方式是在物理层面新建输电专线实现新能源绿色电力直供电给园区。由于新能源子系统不直接接入电网调度系统,而是通过园区综合能源管控系统统一对接电网调度系统,因此,专线供电模式除了聚合园区负荷降低园区整体用能成本需求外,还需增加满足电网调度运行要求,具体如下:
(1)满足电网调度接入要求。风光电场采用专线接入园区,综合能源管控平台需要与电网调度对接,接受调度运行指令。
(2)在公用电网具有额外调节能力的情况下,消纳风光电场富余的电量。
3能源管控平台架构
能源管控平台基于“互联网+”理念,采用“微服务+容器”技术构建。平台上层与电网调度系统通过与电力交易平台交互,以负荷聚合商参与电网第三方辅助服务,代理园区企业参与中长期绿电交易。平台下层与风光储场站系统和算力资源管理平台对接,交互风光储场站的发电量值和预测值等信息,交互算力资源管理平台数据分配和预测值信息。
平台分层架构具体阐述如下,整体架构如图1所示。
图1数据中心综合能源平台架构图
1)应用层5.2平台部署硬件选型
6结语
随着社会对数据中心因为绿色电源供给方式(绿电交易或者绿电直供)、大容量储能、能耗管控、算力资源与电冷负荷相互映射且可调节等特征,平台功能需求与产业园区平台相差很大。
本文首先分析数据中心用能架构和能源供给方式,明确平台建设边界和交互系统,按照互联网思维构建平台架构,平台上层与电网调度系统、电力交易系统交互,平台下层与风光储场站系统和算力资源管理平台交互。
然后根据用能和运行特征,研究平台主要功能,包括:考虑绿电的供给方式不同,研究绿电交易需求功能;考虑算力资源动态可调节,研究能源管控平台和算力平台互动,源荷储互动优化调度;考虑算力与电冷负荷紧密互动,研究设备动态感知与预测;考虑数据中心控能耗指标要求,研究能效管理需求。
本文提出的架构与功能研究基于实际需求提出,为平台开发奠定基础,避免数据中心绿色用能提供**。
【参考文献】
[1]刘金生,肖凌风,李志铿,杨海森.数据中心综合能源管控平台架构与功能研究.电工电气,(2023No.3).
[2]金驰.我国数据中心绿色化发展趋势及思考[J].信息技术与标准化,2021(12):50-52.
[3]朱敏,洪亮.“东数西算”工程建设对数据中心产业链的影响及建议[J].通信企业管理,2022(4):39-41.
[4]高书辰,潘京津.我国数据中心低碳发展现状与路径分析[J].信息技术与标准化,2021(12):53-54.
[5]王晓辉,季知祥,周扬,刘鹏.城市能源互联网综合服务平台架构及关键技术[J].中国电机工程学报,2021,41(7):2310-2321.
[6]韩毅,师帅,朱江,丁艳虹,杨硕.会延庆赛区综合能源利用项目自控系统设计[J].建筑电气,2021,40(11):8-12.
[7]安科瑞企业微电网设计与应用手册2022.5版.
词条
词条说明
湖南红太阳光电科技有限公司印度200MW太阳能电池产业园项目消防设备电源监控系统的研究与应用
杨馨 安科瑞电气股份有限公司,上海 嘉定 201903;摘要:本文简述了消防设备电源的组成原理,分析了消防设备电源监控系统在应用中的设计依据和相关规范。后通过安科瑞消防设备电源监控系统在印度200MW太阳能电池产业园项目的实例介绍,阐述了消防设备电源功能的实现及其重要意义。关键词:消防设备电源;电源监控模块;监控系统;AFPM100; 0 概述 &nbs
使用原则1)电流互感器的接线应遵守串联原则:即一次绕阻应与被测电路串联,而二次绕阻则与所有仪表负载串联2)按被测电流大小,选择合适的变比,否则误差将增大。同时,二次侧一端必须接地,以防绝缘一旦损坏时,一次侧高压窜入二次低压侧,造成人身和设备事故3)二次侧**不允许开路,因一旦开路,一次侧电流I1全部成为磁化电流,引起φm和E2骤增,造成铁心过度饱和磁化,发热严重乃至烧毁线圈;同时,磁路过度饱和磁化
【关键字】:智能照明;变电站;控制系统0引言 随着计算机技术、网络技术、通讯技术的发展,智能控制系统成为必然趋势,它具备先进的软硬件设施专门为各类型内设备进行监控和管理,以满足智能变电站的各种智能使用与管理需要。1 智能照明控制系统的基本概念 利用照明智能化控制可以根据环境变化、客观要求、用户预
浅谈基于 MEMS 结构的配电站环境状态监测及自动化运维装置的研究
杨馨安科瑞电气股份有限公司 上海嘉定 201801摘 要 :本文研究的配电站智能化方案设计是按照“以人为本”、功能实用、技术、运行可靠、经济合理、可扩展等各方面综合考虑的,且充分满足配电站综合技防的功能要求,并将电力物联网建设总体规划作为目标,本着科学规划、安全可靠、资源共享的原则,将基于 MEMS(微机电系统)结构的配电站项目建设成
公司名: 安科瑞电气股份有限公司
联系人: 杨馨
电 话: 021-69156372
手 机: 18702111791
微 信: 18702111791
地 址: 上海嘉定嘉定上海市嘉定区育绿路253号
邮 编:
供应ISPS应急电源ISPS节能电源照明动力ISPS电源ISP0KVA
¥12000.00
¥77.66
¥3500.00
¥800.00