摘要:目前煤矿井下电力系统发生了各种各样的创新和变化。部分矿井使用更高的功率和配电电压较高的电气开关设备,通常使用可编程逻辑控制器(PLC)进行控制、监控和诊断应用,使用内置测试电路改进继电保护,在负载附近进行功率因数校正,以改进电压调节以及修改电力系统部件布置。电力监控系统是由于工作面设备(尤其是长壁设备)的功率需求显著增加所需要的。监测系统主要目的是改善动力系统的运行特性,提高了矿井生产安全性。介绍了利用ARM和以太网技术为核心的煤矿井下监控系统,并对系统进行测试分析,表明了系统稳定可靠且安全性较高。
关键词:煤矿;供电系统;监控系统;ARM技术;测试应用
0引言
在过去几十年里,煤炭生产成本继续下降,这些收益是技术改良的直接结果,同时也是在很大程度上归根于电气系统技术进步的结果。通过企业开发和应用更强大、更复杂的设备,并通过设计向该设备供电的系统,实现了生产收益。近年来,煤矿井下电气系统的电力需求急剧增加。以前,1500kVA的电力网络通常被认为是井下应用的大型电力中心,主变电站大约由5000kVA的变压器供电。如今,高产长壁工作面的电力中心容量**过5000kVA。随着长壁工作面长度的增加,需要更大的电力**。目前电气系统的技术限制在2个方面:自动化和电力输送。随着生产率的提高,工人们越来越难跟上机器的步伐,因而为电力监控系统开发了自动化技术。尽管取得了重要进展,但还需要进行更多研究,本文针对煤矿电力监控系统继续开展技术讨论。解决的电力监控问题是:如何在没有严重电压调节问题的情况下提供大量电力,以及如何安全、经济地中断较大的电力波动,特别是在故障条件下的安全监控。本文中讨论的许多创新成果为矿井电力监控系统研究提供了依据。
1矿井电力监控系统应用目标
1.1设计目标
煤矿综合电力监控系统是在充分利用矿井外电力综合自动化技术的基础上,专门对井下供电系统、电力保护装置、调度自动化等一体化进行监测监控的电力自动化平台。该平台可以集高低压开关在地、离地的保护、测量和控制于一体,实现地下变电站无人值守运行、整个矿山电力系统运行状态的监控、运行参数**限报警、矿山调度系统的实施,实现
视频图像监控系统实现互联。
1.2矿井电力供应简介
我国大多数煤矿属于井工开采,煤矿供电系统从上到下依次为地面变电所、井下*变电所、采区变电所以及移动变电站。供电系统普遍采用的是多级短电缆组成的干线式电网结构。煤矿高压供电等级一般为6~10kV,低压等级有3300V、1140V、660V、380V和220V。《煤矿安全规程》要求井下供电网络采用双回路供电方式,两回路互为备用,即一回路电源或线路出现故障以后,通过调整高压开关,可以将另一路正常电源接过来,保证了负荷的持续供电。
2监测系统的设计
2.1系统架构设计
在回顾了过去和现有的煤矿电力供应技术之后,开发并提出了一个简单的监控系统。该系统以监控单元为主,如图1所示。这两个单元都由作为核心微控制器的LPC2148组成,属于ARM控制器类型。通过以太网收发器相互通信,采矿装置和监控装置中使用的收发器属于同一类型。
图1煤矿电力监控系统架构示意
ARM控制器作为监控系统的核心单位,它采用STM32F103RAM32位处理器作为系统的主芯片,配有24位模数转换器和640×480真彩色液晶显示屏以及相应的软件。该装置以OMAP平台为核心作为保护,较好地利用了TMS320C5470DSP芯片的数字信号处理能力和高ARM926芯片的外围集成,组网**的特点为煤矿配电系统网络保护装置提供了一种新的研究结构。
在电力监控系统中集成C8051F410的光纤激光甲烷传感器。但是光纤传感器在煤矿的推广使用也出现了一些弊端,如显示值暴涨、激光功率变弱等。但是该传感器的加速度较小,为1mm/s2,可用于微地震信号的测量和电力环境中的泄漏测量。
2.2硬件设计
2.2.1ARM微控制器选型
系统选用ARM7TDMI系列的微控制器,具有较低的功耗和价格并提供高性能的技术特点。ARM架构基于精简指令集计算机(RISC)原理,指令集和相关解码机制比微编程复杂指令集计算机(CISC)简单得多。这种简单性带来了高指令吞吐量和实时中断响应。
ARM7TDMI处理器采用了*特的架构策略(THUMB),这使得它非常适合内存受限的大容量应用,或者代码密度存在问题的应用。ARM面对用户串口如图2所示。
图2ARM面对用户串口示意
笔者使用LPC2148,具有如下特征:①16/32位ARM7TDMI-S微控制器,采用小型LQFP64封装;②40KB片内静态RAM和512KB片内闪存程序存储器;③通过片内引导加载软件进行系统内或应用程序内编程;④两个10位模数转换器总共提供14个模拟输入,每个通道的转换时间低至2.44s;⑤单个10位数模转换器提供可变模拟输出;⑥多个串行接口,包括两个UART(16c550)、两个快速I2C总线(400Kb/s)、具有缓冲和可变数据长度功能的SPI和SSP;⑦具有可配置**级和向量地址的向量中断控制器;⑧在一个小型LQFP64封装中,较多可容纳45个5V快速通用输入/输出引脚。
2.2.2元器件设计
电力监控系统不仅需要对电力运行情况进行监控,还需要对周围环境的变化进行感应,以便随时做出针对于电力调节方面的变化,因此,设计了气敏、温湿度传感的元器件。为了检测煤矿井下主要有毒气体甲烷和一氧化碳,使用了MQ-7气体传感器,如图3所示。
传感器由微型AL2O3陶瓷管、二氧化锡敏感层、测量电极和加热器组成,固定在由塑料和不锈钢网制成的外壳中。加热器为敏感部件的工作提供必要的工作条件。封装的MQ-7有6个引脚,其中4个用于获取信号,另外2个用于提供电流。MQ-7传感器与ARM7TDMI的P0
图3MQ-7气体传感器
接口进行连接F。
在所提出的系统中,热敏电阻用作温度传感器,被用来检测非常小的温度变化。温度的变化通过器件电阻的明显变化来反映。这里需要注意的是,NTC热敏电阻在-50~150℃时的电阻分别为10、100kΩ。这意味着200°C的温度变化导致了100∶1的电阻变化。该传感器连接到P1至LPC2148接口。湿度传感器是电阻式的,随着湿度的变化,传感器电阻将发生变化,该传感器连接至LPC2148。
2.3以太网的适配
以太网是由IEEE802.15.4个人区域网标准指
导的一种新的无线技术。它主要为广泛的自动化应用而设计。它目前以20000B/s的数据速率工作,占据在868MHz频段,在**发达工业国家可以以250000B/s的较大数据速率工作,较高可达2400MHz,有效减小了外部信号干扰。
以太网规范是射频Lite和802.15.4规范的结合。该规范工作在2400MHz无线电频段,与802.11b标准、蓝牙、微波和一些其他设备相同。因矿井工作环境恶劣,选用以太网作为通信网络较合适。以太网络可以连接255台电力设备[9]。收发模块的范围在井下可达300~700m,在室外可达1.0~1.5km。收发器具有片内有线天线,工作频率为2400MHz。从微控制器接收的数据根据以太网协议标准进行组织,然后进行调制。该规范支持300m范围内高达250KB/s的数据传输速率。
虽然以太网的技术比802.11b(11MB/s)和蓝牙(1MB/s)慢,但功耗明显更低[10]。系统使用一对以太网模块,一个用于传输地下部分的数据,另一个用于接收地面或监控部分的数据,并且设置主站系统,如图4所示。
图4主站系统组成结构示意
每当监控系统授权人员想要知道参数的状态,或者每当参数值增加到阈值以上时,就会通过调制解调器发送消息。该故障通过液晶屏上的显示来指示。该电力监测将有助于技术人员。
2.4软件设计
WinCC是一个基于窗口的软件开发平台,它将强大的现代编辑器与软件多个拓展工具相结合。它集成了开发嵌入式应用程序所需的所有工具,包括C/C++编译器、宏汇编器、链接器/定位器和十六进制文件生成器。WinCC通过提供集成开发环境,帮助加快嵌入式应用的开发过程。其中生成的KEIL可以用来创建源文件;采用易于使用的用户界面设置的选项,完成自动编译、链接和转换,最后在可以访问数据变量过程中和内存硬件上模拟或执行调试。WinCC大大简化了创建和测试嵌入式应用程序的过程。
为了将应用程序下载到闪存中,这个WinCC实用工具平台是必要的。用C语言生成的程序代码经过处理后生成十六进制形式的目标代码。它被称为十六进制文件。为了将这个十六进制代码转储到控制器的闪存中,该工具提供了Keil编译版本。对于旧版本的编程,同样的任务是在名为FlashMagic的软件的下完成的,在程序内部通过RS-485总线技术进行数据的传递,主要针对于自检模块、故障模块功能进行加强,如图5所示。
3系统安全性设计
3.1接地故障保护
电力监控系统在离线模式下,当电力负载关闭时,该系统持续监控电机绕组和电机启动器互连电缆的绝缘水平。该装置具有可调范围平衡电平,并具有输出计量驱动器(0~1mA)来驱动远程仪表或与ARM控制器接口。如果检测到低绝缘水平或离线接地故障,该装
图5系统主程序流程示意
置将锁定电机电路。该系统还可以显示以欧姆为单位的绝缘水平,这有助于预测性维护。
高压线路利用电路需要后备接地故障保护的功能,如果中性接地电阻开路时发生接地故障,后备接地故障保护将使电源电路断电,这种保护在低压和中压系统中越来越常见。这种类型的保护是通过潜在的继电保护来实现的。
高压线路也利用电路需要中性接地电阻的过温检测。如果持续故障导致接地电阻发热,该保护的目的是打开输入配电电缆的接地检查先导电路。系统应在接地电阻较大温升的50%范围内或150℃下运行,以较小者为准。由于与附近的电力变压器相比,故障接地电阻产生的热量相对较低,因而很难设计出确保这种保护可靠运行的系统。监控系统已经接受了替代方法,如过载电流互感器,只要替代方法不需要控制电源运行,**了监控系统在电力线路发生故障的条件下也能保持工作性能。
3.2功率因数校正和电压调节
大多数煤矿企业认识到电网功率因数校正的经济效益。通过将平均月电网功率因数保持在1.0附近,可以显著节省电力成本。由于大多数煤矿电网的功率因数校正发生在井外,这当然是放置电容器的方便位置,但它距离井下电机负载较远。因此,通过将电容器定位在尽可能靠近负载的位置来改善电压调节控制系统并没有充分发挥出性能。然而,在大容量长壁开采之前,这种功率因数校正优势并不那么重要。在一些大容量系统中,需要在电机负载附近放置功率因数校正的电容,以提供足够的电压调节并减轻电机启动期间电网电压下降的严重程度。
目前,煤矿企业现在正在以电网电力控制中心为连续采矿区安装电容器组。如果有足够的空间,电容器通常安装在电力中心集中控制平台上。采用这种布置,为每个电容器电路提供接地故障保护。电气切换通常由技术人员执行真空接触器和电流或无功检测用于控制开关点。通常提供足够的时间延迟来防止过度切换。电抗器应与开关电容器串联,电容器应具有工厂接线的保险丝、熔断指示器和泄放电阻器。另一种降低电压降和改善电压调节的方法是使用更高的分配电压。过去,7.2kV是煤矿井下常见的配电电压。然而,在许多情况下,这种电压已经无法满足对于今天的大容量长壁工作面开采。因此,在运用电力监控系统时,应当安装一个单独的13.8kV配电系统,**于长壁开采系统及其相关的井上电气设备。矿井的其余部分仍由7.2kV配电系统供电。另一种方案可以安装标称电压为14.4kV的配电系统,目的是在不**过15kV绝缘等级的情况下获得较高的配电电压。只有搭载适应的电网电压并进行功率因数校正,才能确保电力监控系统发挥较好的性能。
4电力监控试验测试分析
4.1试验系统组成设计
试验系统构成如图6所示。在10kV开闭所接一面KYN28A-12(Z)高压开关K2,模拟10kV变电所Ⅱ段任一馈出高压开关K2,在该开关柜安装DMP5101终端1台;再接4台BGP9L(Y)高压防爆开关K3、K4、K5、K6,模拟井下两级变电所的供电线路,每台高压防爆开关内安装1台矿用保护器。五台开关之间一次侧采用高压橡套电缆连接,末端高压防爆开关负荷侧接1根高压橡套电缆。在K2与K3之间设置短路点D1、在K4与K5之间设置短路点D2、在K6负荷侧电缆终端设置短路点D3。
4.2电力监控系统试验运行
点击系统图标进入煤矿电力软件,可以选择查看地面或井下配电室监控画面,同时点击井下配电室系统中的变电所界面,查看井下1号变电所监控画面。监控画面中矩形
图6试验系统组成
形状图标代表断路器,上下各配一闸表示断路器小车状态,综合显示高爆柜当前的运行情况,红色代表合闸位置,绿色代表分闸位置。系统另一个重要功能是对历史数据的查询,历史数据曲线主要功能是将电流、电压等数据以曲线的方式显示,提供直观的数据显示、对比功能。
历史报警模块对各类报警信息以时间为次序,详细罗列了报警的时间、编号、类型、报警内容及持续时间,方便操作人员查询及处理相关信息。
5.安科瑞电力监控解决方案
5.1概述
针对用户(一般为35kV及以下电压等级),通过微机保护装置、开关柜综合测控装置、电气接点无线测温产品、电能质量在线监测装置、配电室环境监控设备、弧光保护装置等设备组成综合自动化的综合监控系统,实现了变电、配电、用电的安全运行和全面管理。监控范围包括用户变电站、开闭所、变电所及配电室等。
Acrel-2000Z电力监控系统是安科瑞电气股份有限公司根据电力系统自动化及无人值守的要求,针对35kV及以下电压等级研发出的一套分层分布式变电站监控管理系统。该系统是应用电力自动化技术、计算机技术、网络技术和信息传输技术,集保护、监测、控制、通信等功能于一体的开放式、网络化、单元化、组态化的系统,适用于35kV及以下电压等级的城网、农网变电站和用户变电站,可实现对变电站*的控制和管理,满足变电站无人或少人值守的需求,为变电站安全、稳定、经济运行提供了坚实的**。
5.2应用场所
适用于轨道交通,工业,建筑,学校,商业综合体等35kV及以下用户端供配电自动化系统工程设计、施工和运行维护。
5.3系统架构
Acrel-2000Z电力监控系统采用分层分布式设计,可分为三层:站控管理层、网络通信层和现场设备层,组网方式可为标准网络结构、光纤星型网络结构、光纤环网网络结构,根据用户用电规模、用电设备分布和占地面积等多方面的信息综合考虑组网方式。
5.4系统功能
(1)实时监测:直观显示配电网的运行状态,实时监测各回路电参数信息,动态监视各配电回路有关故障、告警等信号。
(2)电参量查询:在配电一次图中,可以直接查看该回路详细电参量。
(3)曲线查询:可以直接查看各电参量曲线。
(4)运行报表:查询各回路或设备*时间的运行参数。
(5)实时告警:具有实时告警功能,系统能够对配电回路遥信变位,保护动作、事故跳闸等事件发出告警。
(6)历史事件查询:对事件进行存储和管理,方便用户对系统事件和报警进行历史追溯,查询统计、事故分析。
(7)电能统计报表:系统具备定时抄表汇*计功能,用户可以自由查询自系统正常运行以来任意时间段内各配电节点的用电情况。
(8)用户权限管理:设置了用户权限管理功能,可以定义不同级别用户的登录名、密码及操作权限。
(9)网络拓扑图:支持实时监视并诊断各设备的通讯状态,能够完整的显示整个系统网络结构。
(10)电能质量监测:可以对整个配电系统范围内的电能质量和电能可靠性状况进行持续性的监测。
(11)遥控功能:可以对整个配电系统范围内的设备进行远程遥控操作。
(12)故障录波:可在系统发生故障时,自动准确地记录故障前、后过程的各种电气量的变化情况。
(13)事故追忆:可自动记录事故时刻前后一段时间的所有实时稳态信息。
(14)Web访问:展示页面显示变电站数量、变压器数量、监测点位数量等概况信息,设备通信状态,用电分析和事件记录。
(15)APP访问:设备数据页面显示各设备的电参量数据以及曲线。
5.5系统硬件配置
6结语
本文针对目前矿井电力系统发生的系列变化,设计了井下电力监测系统。该系统的主要特点:对存在塑壳断路器的替代产品进行了监控设计;改进了接地故障保护;测试模式、障碍和内置测试电路的接地保护有变化;改善电压调节的负载附近功率因数校正;增加可编程控制器在控制、监控和诊断应用中的使用。ARM和以太网技术为核心的煤矿井下监控系统提供低功耗平台,明了像ARM7这样的控制器的更高级版本可以有更快的执行速度和较低的功耗。通过使用远程操作,该系统可以更实时对电力系统运行情况进行观察,并且在工程现场验证了该系统的安全性、可靠性、稳定性。
参考文献
[1]王旭昭,侯磊,苏龙.2011—2014年全国煤矿重特大事故统计分析与启示[J].中国公共安全(学术版),2015(2):26-29.
[2]黄振球.浅谈变电站自动化系统应用中若干问题及处理办法[J].广东技术,2008(18):167-168.
[3]贾菲,李欣,马春光.60kV变电站无人值班改造方案的探讨[J].企业科技与发展,2009(22):137-139.
[4]刘国林,苗满文.煤矿井下供电过程电力监控系统应用研究.
[5]安科瑞企业微电网设计与应用手册 2022.05版.
安科瑞电子商务(上海)有限公司专注于餐饮油烟智能在线监测系统,电动机智能保护装置,电瓶车智能充电管理系统,工业能耗监测系统,弧光保护装置,数显温湿度控制器等